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Variational principles for locally variational forms

J. Brajerč́ık, D. Krupka1

Abstract. We present the theory of higher order local variational principles in
fibered manifolds, in which the fundamental global concept is a locally variational
dynamical form. Any two Lepage forms, defining a local variational principle for
this form, differ on intersection of their domains, by a variationally trivial form. In
this sense, but in a different geometric setting, the local variational principles satisfy
analogous properties as the variational functionals of the Chern-Simons type. The
resulting theory of extremals and symmetries extends the firts order theories of the
Lagrange-Souriau form, presented by Grigore and Popp, and closed equivalents of
the first order Euler-Lagrange forms of Haková and Krupková. Conceptually, our
approach differs from Prieto, who uses the Poincaré-Cartan forms, which do not
have higher order global analogues.
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1. Introduction

It is well known that differential equations for critical points of a variational functional
in a fibered manifold can be represented by a global differential form, the Euler-Lagrange
form, whose components are the Euler-Lagrange expressions. It is also well known that
there exist differential equations, represented by similar global differential forms, the
dynamical forms, which are locally variational, but do not admit a global lagrangian. A
deeper understanding of this phenomenon is provided by the variational bicomplex theory
(Vinogradov [31], Takens [28], Anderson and Duchamp [2], Dedecker and Tulczyjew [6],
Tulczyjew [30]), and the (finite order) variational sequence theory (Krupka [20], Grigore
[12], Vitolo [32], Krbek and Musilová [14]).

The corresponding variational principles in the first order field theory have been re-
cently studied by several authors. Grigore and Popp [11] extended the ideas of Souriau
[27] on the role of closed 2-forms in mechanics to (n+1)-forms in the variational theory for
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mous referee for valuable comments and suggestions, completing the references. The second author is
grateful to the Mathematics Department and the Institute for Advanced Study at La Trobe University, Mel-
bourne, where as an IAS Distinguished Fellow he worked on the research project Differential equations
and their variational properties.
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n-dimensional submanifolds of a given manifold. They introduced the Lagrange-Souriau
form, representing the Euler-Lagrange equations, and proved that this form is equal to
the exterior derivative of the fundamental Lepage form in the sense of Krupka [19], [16]
(see also Betounes [3], [4], and Rund [25]). The theory presented by Prieto [23], [24]), is
based on the existence of the global Poincaré-Cartan form (Sniatycki [26], Goldschmidt
and Sternberg [9], Krupka [15], [19], Garćıa [8]), and is aimed to extend basic properties
of variational principles of the Chern-Simons type (see e.g. Freed [7]) to fibered manifolds.
Haková and Krupková [13] showed that the closed (n + 1)-forms related to variational
systems of first order partial differential equations are exactly the exterior derivative of
the fundamental Lepage form.

Closed 2-forms in higher order mechanics, equivalent with the Euler-Lagrange forms,
were studied by Krupková [21], [22].

This paper is devoted to local variationality in the framework of the higher order
variational theory on fibered spaces (Krupka [17], [19]), and the variational sequence
theory. In general, for higher order lagrangians in field theory a global analogue of the
Poincaré-Cartan form does not exist. We show that instead of this form one can use
any Lepage form; the Poincaré-Cartan form is an example of a first order Lepage form.
Any (higher order) Lepage form gives rise, by means of the global variation formula, to
the (higher order) Euler-Lagrange form. Conceptually, the theory is quite simple and
clear. In particular, it is easy to understand, in full generality, that there exist (global)
dynamical forms, admitting local higher order lagrangians, but not a global one.

In Section 2 we give a survey of the higher order variational theory on fibered spaces.
Section 3 is devoted to some new results on infinitesimal symmetries, based on the fun-
damental Lepage form. In Section 4 we introduce a local variational principle for a locally
variational dynamical form. We give the first variation formula and discuss properties
of transformations, leaving invariant the local variational principle, and the locally vari-
ational form.

In this paper we suppose that we have a fibered manifold π : Y −→ X, and write
n = dimX, and n+m = dimY . JrY is the r-jet prolongation of Y , and πr,s : JrY −→
JsY , πr : JrY −→ X are the canonical jet projections. The r-jet prolongation of a
section γ is defined to be the mapping x −→ J rγ(x) = Jrxγ. For any set W ⊂ Y we
denote W r = (πr,0)−1(W ). Any fibered chart (V, ψ), ψ = (xi, yσ), on Y , induces the
associated charts on X and on JrY , denoted by (U,ϕ), ϕ = (xi), and (V r, ψr), ψr =
(xi, yσ, yσj1 , y

σ
j1j2

, . . . , yσj1j2...jr ), respectively; here 1 ≤ i ≤ n, 1 ≤ σ ≤ m, and V r =

(πr,0)−1(V ), U = πr(V ). We denote ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, and

ωk = i∂/∂xkω0 = (−1)k−1dx1 ∧ dx2 ∧ . . . ∧ dxk−1 ∧ dxk+1 ∧ . . . ∧ dxn.

We define the formal derivative operator by

di =
∂

∂xi
+ yσi

∂

∂yσ
+ yσi1i

∂

∂yσi1
+ . . .+ yσi1i2...iri

∂

∂yσi1i2...ir
.

2. Lagrange structures

2.1. Differential forms on jet spaces

For any open set W ⊂ Y , let Ωr0W be the ring of functions on W r. The Ωr0W -module
of differential q-forms on W r is denoted by ΩrqW , and the exterior algebra of forms on

W r is denoted by ΩrW . The module of πr,0-horizontal (πr-horizontal) q-forms is denoted
by Ωrq,YW (Ωrq,XW , respectively); forms belonging to these spaces are sometimes called

πr,0-semibasic, or πr-semibasic, respectively.
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Let W ⊂ Y be an open set. The fibered structure of Y induces a morphism of exterior
algebras h : ΩrW −→ Ωr+1W , called the horizontalization. In a fibered chart (V, ψ),
ψ = (xi, yσ), h is defined by

hf = f ◦ πr+1,r, hdxi = dxi, hdyσj1j2...jp = yσj1j2...jpkdx
k,

where f :W r −→ R is a function, and 0 ≤ p ≤ r. Note that h can be defined intrinsically:
for a k-form η ∈ ΩrkW , where 0 ≤ k ≤ n, we define hη to be a unique πr+1-horizontal
form such that Jrγ∗η = Jr+1γ∗hη for every section γ of Y (here ∗ denotes the pull-back
operation).

We say that a form η ∈ ΩrkW is contact, if hη = 0. For any fibered chart (V, ψ),
ψ = (xi, yσ), the 1-forms

ωσj1j2...jp = dyσj1j2...jp − y
σ
j1j2...jpkdx

k,

where 1 ≤ p ≤ r − 1, are examples of contact 1-forms. Note that these forms define a
basis of 1-forms on V r, (dxi, ωσj1j2...jp , dy

σ
j1j2...jr

).

It is known that a form η ∈ ΩrkW has a unique decomposition

(1) (πr+1,r)∗η = hη + p1η + p2η + . . .+ pkη,

such that piη contains, in any fibered chart, exactly i exterior factors ωσj1j2...jl , 1 ≤ l ≤ r.
In particular, this gives us a simple formulation of the fact that the forms ωσj1j2...jl
generate an ideal in the exterior algebra ΩrV (the contact ideal).
hη (piη) is the horizontal (i-th contact) component of η. The decomposition (1) is

invariant, and is called the canonical decomposition of η.
η is πr-horizontal if and only if (πr+1,r)∗η = hη. We say that η is k-contact, if

(πr+1,r)∗η = pkη; in this case k is the order of contactness of η.
Let k ≥ n + 1. Then for any k-form η ∈ ΩrkW , hη = 0, p1η = 0, p2η = 0, . . . ,

pk−n−1η = 0, because every of these forms contains more than n exterior factors dxi. η
is said to be strongly contact, if pk−nη = 0.

2.2. Lagrangians

A lagrangian (of order r) for Y is any πr-horizontal n-form on some W r ⊂ JrY , i.e.,
any element of the set Ωrn,XW . In a fibered chart (V, ψ), ψ = (xi, yσ), a lagrangian of

order r defined on V r = (πr,0)−1(V ) has an expression

(2) λ = Lω0,

where L : V r −→ R is a function (the Lagrange function associated with λ and (V, ψ)).
Clearly, in general a lagrangian cannot be determined by a globally defined function
unless a volume element on X is specified.

A pair (Y, λ), consisting of a fibered manifold Y and a lagrangian λ of order r for Y
is called a Lagrange structure (of order r).

Sometimes it is convenient to use lagrangians of the form λ = hη, where η ∈ Ωr−1
n W .

These lagrangians have a certain polynomial structure in the highest order variables
yσj1j2...jr . The assumption λ = hη appears naturally in the variational sequence theory,
but does not restrict the generality.

Note that our definition includes lagrangians defined over any open subsets W ⊂ Y ;
we need such a definition to describe phenomena arising in connection with the so called
local variational principles for globally defined Euler-Lagrange equations. The discussion
of this situation is a main objective of this paper.
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2.3. Lepage forms

We now give a formal definition of a Lepage form (Krupka [19]). A principal geometric
meaning of this concept consists in the fact, that Lepage forms describe the relationship
between the equations for extremals of variational principles on one side, and the exterior
derivative operator, acting on differential forms, on the other side.

A differential form ρ ∈ ΩsnW , where n = dimX, is called a Lepage form, if p1dρ is
πs+1,0-horizontal, i.e., p1dρ ∈ Ωs+1

n+1,YW . A Lepage form ρ is a Lepage equivalent of a
lagrangian λ ∈ Ωrn,XW , if the horizontal component of ρ coincides with λ, i.e., hρ = λ

(possibly up to a jet projection).
If ρ is a Lepage equivalent of a lagrangian λ ∈ Ωrn,XW , expressed by (2), then one can

get by a direct calculation

(3) p1dρ = Eσ(L)ω
σ ∧ ω0,

where

(4) Eσ(L) =
r
∑

k=0

(−1)kdi1di2 . . . dik
∂L

∂yσi1i2...ik

are the Euler-Lagrange expressions associated with the Lagrange function L. In parti-
cular, p1dρ depends on the lagrangian λ only. The (n+ 1)-form

Eλ = p1dρ

is called the Euler-Lagrange form associated with λ.
We give three examples of Lepage equivalents:
(1) Every first order lagrangian λ ∈ Ω1

n,XW has a unique Lepage equivalent Θλ ∈

Ω1
n,YW whose order of contactness is ≤ 1. If λ is expressed in a fibered chart by λ = Lω0,

then

Θλ = Lω0 +
∂L

∂yσi
ωσ ∧ ωi.

Θλ is the Poincaré-Cartan equivalent of λ, or the Poincaré-Cartan form.
(2) Let λ ∈ Ω1

n,XW be as above. The fundamental Lepage equivalent Φλ ∈ Ω1
n,YW of

λ is given by

(5) Φλ =
n
∑

k=0

(

1

k!

)

2 ∂kL

∂yσ1
j1
∂yσ2

j2
. . . ∂yσkjk

ωσ1 ∧ ωσ2 ∧ . . . ∧ ωσk ∧ ωj1j2...jk,

where
i∂/∂xik . . . i∂/∂xi2 i∂/∂xi1ω0 = ωi1i2...ik .

Φλ has the following remarkable properties: (a) dΦλ = 0 if and only if Eλ = 0, and
(b) λ = hη for some η ∈ Ω0

nW if and only if Eλ is π2,1-projectable. The form Φλ was
introduced for the first time by Krupka ([19], [16]), and it was rediscovered by Betounes
[3], [4], and Rund [25] who wrote Φλ in a more simple way as it stands in (5).

(3) Expression

(6) Θλ = Lω0 +

(

∂L

∂yσi
− dp

∂L

∂yσpi

)

ωσ ∧ ωi +
∂L

∂yσji
ωσj ∧ ωi

generalizes the Poincaré-Cartan form to second order lagrangians λ ∈ Ω2
n,XW (Krupka

[19]), higher order generalizations can be found in Krupka [17]. It can be shown that
every Lepage equivalent of a lagrangian λ = Lω0 of order r has the chart expression
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ρ = Θλ + dµ+ ν, where

(7) Θλ = Lω0 +

s
∑

k=0

(r−k
∑

l=0

(−1)ldi1di2 . . . dil
∂L

∂yσi1i2...ilj1j2...jk

)

ωσj1j2...jk ∧ ωi,

µ is a contact form, and ν is of order of contactness ≥ 2. Expression (6) defines a
differential form on J3Y , but for r ≥ 3, the (local) Lepage equivalents (7) of λ are no
longer invariant.

2.4. Automorphisms, variations

By an automorphism of Y we mean a diffeomorphism α :W −→ Y , whereW ⊂ Y is an
open set, such that there exists a diffeomorphism α0 : π(W ) −→ X such that πα = α0π.
If α0 exists, it is unique, and is called the π-projection of α. The r-jet prolongation of α
is an automorphism Jrα :W r −→ JrY of JrY , defined by

Jrα(Jrxγ) = Jrα0(x)
(αγα−1

0 ).

Let U ⊂ X be an open set, and let γ : U −→ Y be a section. Let ξ be a π-projectable
vector field on an open set W ⊂ Y such that γ(U) ⊂W . If αt is the local one-parameter
group of ξ, and α(0)t is its projection, then since παt = α(0)tπ,

γt = αtγα
−1
(0)t

is one-parameter family of sections of Y , depending smoothly on t. γt is called the vari-
ation, or the deformation of γ, induced by ξ.

We define the r-jet prolongation of ξ to be the vector field J rξ on JrY whose local
one-parameter group is Jrαt . Thus,

Jrξ(Jrxγ) =

{

d

dt
Jrα(0)t(x)

(αtγα
−1
(0)t

)

}

0
.

2.5. Global variational functionals

Let Ω be a piece of X (a compact, n-dimensional submanifold of X with boundary
∂Ω), let ΓΩ,W (π) be the set of smooth sections γ over Ω such that γ(Ω) ⊂ W . Suppose
that we have a lagrangian λ ∈ Ωrn,X(W ). This gives rise to the variational functional, or

the action function associated with λ, ΓΩ,W (π) 3 γ −→ λΩ(γ) ∈ R, defined by

λΩ(γ) =

∫

Ω

Jrγ∗λ.

Choose a section γ ∈ ΓΩ,W (π) and a π-projectable vector field ξ on Y , and consider
the induced variation γt of γ. Since the domain of γt contains Ω for all sufficiently small
t, we get a real-valued function on a neighborhood (−ε, ε) of the origin 0 ∈ R,

(−ε, ε) 3 t −→ λα(0)t(Ω)
(αtγα

−1
(0)t

) =

∫

α(0)t(Ω)

Jr(αtγα
−1
(0)t

)∗λ ∈ R.

Differentiating this function at t = 0 we obtain

(8) (∂Jrξλ)Ω(γ) =

∫

Ω

Jrγ∗∂Jrξλ,
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where ∂Jrξλ is the Lie derivative of λ by Jrξ. The number (8) is the variation of the vari-
ational function λΩ at γ, induced by the vector field ξ. This formula shows, in particular,
that the function ΓΩ,W (π) 3 γ −→ (∂Jrξλ)Ω(γ) ∈ R is the variational functional (over Ω)
associated with the lagrangian ∂Jrξλ. We call this function the variational derivative, or
the first variation of λΩ by ξ.

We now compute the Lie derivative ∂Jrξλ. Choose to this purpose a Lepage equivalent
ρ of λ, and denote by s the order of ρ. Since λ = hρ, or, which is the same, J rγ∗λ = Jsγ∗ρ
for all sections γ, we obtain

Jrγ∗∂Jrξλ = Jsγ∗∂Jsξρ = Jsγ∗(iJsξdρ+ diJsξρ).

Omitting γ and using the Euler-Lagrange form (3), (4), we get

(9) ∂Jrξλ = hiJs+1ξEλ + hdiJsξρ.

This is the differential first variation formula; the first term on the right is the Euler-
Lagrange term, and the second one is the boundary term.

Writing (9) in coordinates, we obtain the well-known classical expressions, standing
behind the variation integral.

2.6. Extremals

Let λ ∈ Ωrn,XW be a lagrangian, and let ρ ∈ ΩsnW be a Lepage equivalent of λ. We say

that a section γ ∈ ΓΩ,W (π) is stable with respect to a variation ξ of γ, if (∂Jrξλ)Ω(γ) = 0.
Stable sections with respect to families of variations are defined in an obvious way. If
γ is stable with respect to all ξ with support contained in π−1(Ω), we say that γ is an
extremal of λΩ. A section γ which is an extremal of every λΩ is called an extremal of λ.

The following conditions are equivalent: (1) γ is an extremal of λ, (2) γ satisfies

Jsγ∗iJsξdρ = 0

for all π-vertical vector fields ξ, and (3) for every fibered chart on Y , γ satisfies the
system of partial differential equations

Eσ(L) ◦ J
2rγ = 0.

2.7. Trivial lagrangians

A lagrangian λ ∈ Ωrn,XW is called trivial (or variationally trivial, or null) if there

exists an (n − 1)-form η ∈ Ωsn−1W such that λ = hdη. λ is called locally trivial if there
exists an open covering {Wι}ι∈I of Y , and to each ι ∈ I an (n − 1)-form ηι ∈ Ωsn−1Wι,
such that λ = hdηι over Wι.

The following is a standard consequence of variational sequence theory.

Theorem 1. A lagrangian λ is locally trivial if and only if Eλ = 0.

2.8. Locally variational forms

A 1-contact, πs,0-horizontal form ε ∈ Ωsn+1,YW is called a dynamical form (Krupková

[22]; Takens [28] calls such forms source forms). From the definition it follows that in a
fibered chart (V, ψ), ψ = (xi, yσ),

ε = εσω
σ ∧ ω0,
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where εσ = εσ(x
i, yσ, yσj1 , y

σ
j1j2

, . . . , yσj1j2...js). We say that a dynamical form ε is varia-
tional, if ε = Eλ for some lagrangian λ ∈ Ωrn,XW . ε is said to be locally variational, if

there are an open covering {Vι}ι∈I of Y and a family {λι}ι∈I of lagrangians λι ∈ Ωrn,XVι
such that for every ι ∈ I,

ε|Vι = Eλι .

Denote

Hj1j2...ji
σ ν(ε) =

∂εν

∂yσj1j2...ji
− (−1)i

∂εσ

∂yνj1j2...ji

−

s
∑

k=i+1

(−1)k
(

k
i

)

dji+1
dji+2

. . . djk
∂εσ

∂yνj1j2...jiji+1...jk

,

and

Hε =
1

2

s
∑

i=1

Hj1j2...ji
σ ν(ε)ω

σ
j1j2...ji ∧ ω

ν ∧ ω0.

The functions Hj1j2...ji
σ ν(ε), called the Helmholtz expressions, appeared for the first time

in Aldersley [1]; Hε is the (global) Helmholtz form (Anderson [2], Krupka [18], [20], Krbek
and Musilová [14]).

The following is a consequence of the variational sequence theory.

Theorem 2. A source form ε is locally variational if and only if Hε = 0.

2.9. Invariant transformations

An automorphism α : W −→ Y of the fibered manifold Y is said to be an invariant
transformation of a form η ∈ ΩspW , if

Jsα∗η = η.

We also say that η is invariant with respect to α. Let ξ be a π-projectable vector field
on Y . We say that ξ is the generator of invariant transformations of η, if

∂Jsξη = 0.

In this case we also say that η is invariant with respect to ξ. These definitions include
the notions of invariance of lagrangians, dynamical forms, and, in particular, the Euler-
Lagrange forms.

Note that for any π-projectable vector field ξ, and any λ ∈ Ωrn,XW ,

(10) ∂JsξEλ = E∂Jrξλ,

where s is the order of the Euler-Lagrange form Eλ. Thus, Eλ is invariant with respect
to ξ if and only if ∂Jrξλ is a trivial lagrangian.

The following result is standard.

Theorem 3. Let ξ be a π-projectable vector field on Y , and let λ ∈ Ωr+1
n,XW be a

lagrangian. The following conditions are equivalent:
(a) ξ generates invariant transformations of the Euler-Lagrange form Eλ.
(b) There exist an open covering {Vι}ι∈I of Y and a system of (n− 1)-forms {ηι}ι∈I ,

where ηι ∈ Ωrn−1Vι, such that

∂Jr+1ξλ = hdηι.
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The following simple consequence of the first variation formula is known as the Noether’s
theorem.

Theorem 4. Let λ ∈ Ωr+1
n,XW be a lagrangian. Let ρ ∈ ΩsnW be a Lepage equivalent

of λ, and let γ be an extremal.
(a) For any generator ξ of invariant transformations of λ,

dJsγ∗iJsξρ = 0.

(b) For any generator ξ of invariant transformations of Eλ, there exist an open cove-
ring {Vι}ι∈I of W and a family {ηι}ι∈I of (n− 1)-forms ηι ∈ Ωrn−1Vι such that for every
ι ∈ I,

dJsγ∗(iJsξρ− ηι) = 0.

3. Invariance: First order variational principles

One of specific features of the first order Lagrange structures consists in existence
of two “simple” Lepage forms (Section 2.3). The first one is the Poincaré-Cartan form,
whose order of contactness is ≤ 1 (see e.g. Garćıa [8], Goldschmidt and Sternberg [9],
Krupka [15], Prieto [24]). The second one is the fundamental Lepage form, whose order
of contactness is, in general, maximal, i.e., ≤ n. We now compare invariance properties
of these forms. Our results extend the usual concepts, based on the use of the Poincaré-
Cartan form. For general approach to invariance we refer to Trautman [29] and Krupka
[15], [19].

As before, we denote by Φλ the fundamental Lepage equivalent, associated with a first
order lagrangian λ, and by Θλ the Poincaré-Cartan equivalent.

Theorem 5. For any automorphism α :W −→ Y of Y ,

(11) J1α∗Φλ = ΦJ1α∗λ.

Proof. 1. Let α0 be the projection of α, and let (V, ψ), ψ = (xi, yσ), and (
–
VV , ψ̄ψ),

ψ̄ψ = (x̄xi, ȳyσ), be two fibered charts such that α(V ) ⊂
–
VV . Let (U,ϕ), ϕ = (xi), and (

–
UU , ϕ̄ϕ),

ϕ̄ϕ = (x̄xi) be the associated charts on X. Denote

x̄xiα0ϕ
−1 = f i, ȳyσαψ−1 = F σ,

and
xpα−1

0 ϕ̄ϕ−1 = gp.

Clearly, on the corresponding domains,

f i(g1(x̄x1, x̄x2, . . . , x̄xn), g2(x̄x1, x̄x2, . . . , x̄xn), . . . , gn(x̄x1, x̄x2, . . . , x̄xn)) = x̄xi,

gp(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)) = xp.

From these formulas, we can easily derive equations of the mapping J 1α :W 1 −→ J1Y
in terms of the associated coordinates. By definition, we have for every J 1

xγ ∈ W 1,
J1α(J1xγ) = J1α0(x)

(αγα−1
0 ). On V 1 ⊂W 1,

x̄xiJ1α(J1xγ) = x̄xiJ1α0(x)
(αγα−1

0 ) = x̄xiα0(x) = x̄xiα0ϕ
−1(ϕ(x)),

ȳyσJ1α(J1xγ) = ȳyσJ1α0(x)
(αγα−1

0 ) = ȳyσαψ−1(ψ(γ(x))),
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and
ȳyσj J

1α(J1xγ) = ȳyσj J
1
α0(x)

(αγα−1
0 ) = Dj(ȳy

σαγα−1
0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x))).

Computing the derivative by the chain rule, we get

Dj(ȳy
σαγα−1

0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x)))

= D1,k(ȳy
σαψ−1)(ψ(γ(x)))Dj(x

kα−1
0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x)))

+D2,ν(ȳy
σαψ−1)(ψ(γ(x)))Dk(y

νγϕ−1)(ϕ(x))Dj(x
kα−1

0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x))).

We define functions F σj : V 1 −→ R by

F σj (x
i(J1xγ), y

τ (J1xγ), y
τ
p (J

1
xγ))

= D1,k(ȳy
σαψ−1)(ψ(γ(x)))Dj(x

kα−1
0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x)))

+D2,ν(ȳy
σαψ−1)(ψ(γ(x)))Dk(y

νγϕ−1)(ϕ(x))Dj(x
kα−1

0 ϕ̄ϕ−1)(ϕ̄ϕ(α0(x))),

or, which is the same, by

F σj (x
i, yτ , yτp )

=

((

∂F σ

∂xk

)

(xi,yτ )
+

(

∂F σ

∂yν

)

(xi,yτ )
yνk

)(

∂gk

∂x̄xj

)

(f1(xi),f2(xi),...,fn(xi))

= (dkF
σ)(xi, yτ , yτj )

(

∂gk

∂x̄xj

)

(f1(xi),f2(xi),...,fn(xi))
.

Then
ȳyσj J

1α(ψ1)−1 = F σj .

Summarizing, we see that the mapping J1α is expressed by equations

x̄xiα0ϕ
−1 = f i, ȳyσαψ−1 = F σ,

ȳyσj J
1α(ψ1)−1 = dkF

σ ·

(

∂gk

∂x̄xj
◦ ϕ̄ϕα0ϕ

−1

)

.

2. We now derive chart expressions for the forms α∗0ω̄ω0 and α∗0ω̄ω i1i2...ik , where 1 ≤ k ≤
n. We have, with obvious conventions,

α∗0ω̄ω0(x) = d(x̄x1α0)(x) ∧ d(x̄x
2α0)(x) ∧ . . . ∧ d(x̄x

nα0)(x)

= det

(

∂fp

∂xq

)

ϕ(x)
ω0(x).

Analogously, since

Tα0(x)α
−1
0 ·

(

∂

∂x̄xi

)

ϕ̄ϕα0(x)
=

(

∂gj

∂x̄xi

)

α0(x)

(

∂

∂xj

)

x
,

and
α∗0ω̄ω i(x)(ξ2, ξ3, . . . , ξn)

=

(

∂(xjα−1
0 ϕ̄ϕ−1)

∂x̄xi

)

ϕ̄ϕα0(x)
det

(

∂(x̄xpα0ϕ
−1)

∂xq

)

ϕ(x)
ωj(x)(ξ2, ξ3, . . . , ξn),
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we have

α∗0ω̄ω i(x) =

(

∂gj

∂x̄xi

)

ϕ̄ϕα0(x)
det

(

∂fp

∂xq

)

ϕ(x)
ωj(x).

Continuing in the same way we obtain

α∗0ω̄ω i1i2...ik(x)(ξk+1, ξk+2, . . . , ξn)

=

(

∂gj1

∂x̄xi1

)

ϕ̄ϕα0(x)

(

∂gj2

∂x̄xi2

)

ϕ̄ϕα0(x)
. . .

(

∂gjk

∂x̄xik

)

ϕ̄ϕα0(x)
det

(

∂fp

∂xq

)

ϕ(x)

· ωj1j2...jk(x)(ξk+1, ξk+2, . . . , ξn),

i.e.,

α∗0ω̄ω i1i2...ik(x) =

(

∂gj1

∂x̄xi1

)

ϕ̄ϕα0(x)

(

∂gj2

∂x̄xi2

)

ϕ̄ϕα0(x)
. . .

(

∂gjk

∂x̄xik

)

ϕ̄ϕα0(x)

· det

(

∂fp

∂xq

)

ϕ(x)
ωj1j2...jk(x).

3. Similarly,

(J1α)∗ω̄ωσ(J1xγ) =

(

∂F σ

∂yν

)

ψγ(x)
ων(J1xγ).

4. We now prove Theorem 5. To simplify our formulas, we sometimes write x, or γ(x),

instead of J1xγ. Let the lagrangian λ be expressed over
–
VV by

λ =
–
LLω̄ω0.

Then over V ,

(J1α)∗λ(J1xγ) = (
–
LL ◦ J1α(J1xγ)) det

(

∂fp

∂xq

)

ϕ(x)
ω0(x).

We can express the form ΦJ1α∗λ over V . Taking into account the summand containing
k exterior factors ωσ, we have the form from formula (5),

(12)

(

∂k(
–
LL ◦ J1α ◦ (ψ1)−1)

∂yσ1
j1
∂yσ2

j2
. . . ∂yσkjk

)

ψ1(J1
xγ)

det

(

∂fp

∂xq

)

ϕ(x)

· ωσ1(J1xγ) ∧ ω
σ2(J1xγ) ∧ . . . ∧ ω

σk(J1xγ) ∧ ωj1j2...jk(J
1
xγ).

But
(

∂(
–
LL ◦ J1α ◦ (ψ1)−1)

∂yσ1
j1

)

ψ1(J1
xγ)

=

(

∂
–
LL

∂ȳyν1p1

)

ψ̄ψ1J1α(J1
xγ)

(

∂F ν1

∂yσ1

)

ψγ(x)

(

∂gj1

∂x̄xp1

)

ϕ̄ϕα0(x)
,
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and in the same way

(

∂k(
–
LL ◦ J1α ◦ (ψ1)−1)

∂yσ1
j1
∂yσ2

j2
. . . ∂yσkjk

)

ψ1(J1
xγ)

=

(

∂k
–
LL

∂ȳyν1p1∂ȳy
ν2
p2 . . . ∂ȳy

νk
pk

)

ψ̄ψ1J1α(J1
xγ)

(

∂F ν1

∂yσ1

)

ψγ(x)

(

∂gj1

∂x̄xp1

)

ϕ̄ϕα0(x)

·

(

∂F ν2

∂yσ2

)

ψγ(x)

(

∂gj2

∂x̄xp2

)

ϕ̄ϕα0(x)
. . .

(

∂F νk

∂yσk

)

ψγ(x)

(

∂gjk

∂x̄xpk

)

ϕ̄ϕα0(x)
.

Consequently, (12) gives the expression

(13)

(

∂k
–
LL

∂ȳyν1p1∂ȳy
ν2
p2 . . . ∂ȳy

νk
pk

)

ψ̄ψ1J1α(J1
xγ)

(

∂F ν1

∂yσ1

)

ψγ(x)

(

∂gj1

∂x̄xp1

)

ϕ̄ϕα0(x)

·

(

∂F ν2

∂yσ2

)

ψγ(x)

(

∂gj2

∂x̄xp2

)

ϕ̄ϕα0(x)
. . .

(

∂F νk

∂yσk

)

ψγ(x)

(

∂gjk

∂x̄xpk

)

ϕ̄ϕα0(x)

· det

(

∂f̄f p

∂xq

)

ϕ(x)

· ωσ1(J1xγ) ∧ ω
σ2(J1xγ) ∧ . . . ∧ ω

σk(J1xγ) ∧ ωj1j2...jk(J
1
xγ).

On the other hand, consider in Φλ the summand

(14)
∂k

–
LL

∂ȳyσ1
j1
∂ȳyσ2

j2
. . . ∂ȳyσkjk

ω̄ωσ1 ∧ ω̄ωσ2 ∧ . . . ∧ ω̄ωσk ∧ ω̄ω j1j2...jk

over
–
VV . Computing the pull-back J1α∗Φλ, and in particular, the pull-back of the diffe-

rential form (14), we obtain

(15)

(

∂k
–
LL

∂ȳyσ1
j1
∂ȳyσ2

j2
. . . ∂ȳyσkjk

)

ψ̄ψ1J1α(J1
xγ)

·

(

∂F σ1

∂yν1

)

ψγ(x)

(

∂F σ2

∂yν2

)

ψγ(x)
. . .

(

∂F σk

∂yνk

)

ψγ(x)

·

(

∂gl1

∂x̄xj1

)

ϕ̄ϕα0(x)

(

∂gl2

∂x̄xj2

)

ϕ̄ϕα0(x)
. . .

(

∂glk

∂x̄xjk

)

ϕ̄ϕα0(x)
det

(

∂f̄f p

∂xq

)

ϕ(x)

· ων1(J1xγ) ∧ ω
ν2(J1xγ) ∧ . . . ∧ ω

νk(J1xγ) ∧ ωl1l2...lk(J
1
xγ).

Since (13) and (15) agree, we are done.

Corollary 1. For every π-projectable vector field ξ, the fundamental Lepage form Φλ
satisfies

∂J1ξΦλ = Φ∂
J1ξ

λ.

Corollary 2. The Poincaré-Cartan form Θλ satisfies

(16) J1α∗Θλ = ΘJ1α∗λ
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and

(17) ∂J1ξΘλ = Θ∂
J1ξ

λ.

Proof. From the properties of contact forms it follows that the forms of the same
order of contactness on the left and right hand side of formula (11) agree. Formula (16)
means just the equality of forms of order of contactness ≤ 1.

From Theorem 5 we can easily derive, for lagrangians of order 1, formula (10) of
Section 2.9.

Corollary 3. The Euler-Lagrange form Eλ satisfies

(18) ∂J2ξEλ = E∂
J1ξ

λ.

Proof. From Theorem 5 it follows that

∂J2ξp1dΦλ = p1∂J1ξdΦλ = p1dΦ∂
J1ξ

λ,

which is exactly formula (18).

We are now in position to study symmetries of the first order Lagrange structures.
According to the definition used by Prieto [24], an infinitesimal symmetry of a first
order lagrangian λ is a vector field Ξ on J1Y such that ∂ΞΘλ = −dη for some (n − 1)-
form η. Clearly, if Ξ is an infinitesimal symmetry, then d∂ΞΘλ = 0, and the converse
holds locally. In the following theorem we consider infinitesimal symmetries of the form
Ξ = J1ξ, where ξ is a π-projectable vector field, and compare them with generators of
invariant transformations of the Euler-Lagrange form.

Theorem 6. Let λ be a first order lagrangian, and let ξ be a π-projectable vector
field.

(a) ξ is the generator of invariant transformations of the Euler-Lagrange form Eλ if
and only if ∂J1ξdΦλ = 0.

(b) If Ξ = J1ξ is an infinitesimal symmetry, then ξ generates invariant transforma-
tions of Eλ.

Proof. (a) Suppose that ∂J2ξEλ = 0. Then from Corollary 3, E∂
J1ξ

λ = 0, hence

dΦ∂
J1ξ

λ = 0 and according to Theorem 5, ∂J1ξdΦλ = 0. The converse is proved by

reversing the arguments.
(b) Supposing that d∂J1ξdΘλ = 0 we obtain dΘ∂

J1ξ
λ = 0 (Corollary 2) and by defini-

tion,
p1dΘ∂

J1ξ
λ = E∂

J1ξ
λ = ∂J2ξEλ = 0.

Remark 1. In Theorem 6, we give some properties of generators of invariant trans-
formations of the Euler-Lagrange form on one side, and infinitesimal symmetries on the
other side. Note that for several reasons, the definition of infinitesimal symmetry in its
full generality does not seem well-motivated. First, variations, induced by general vector
fields on J1Y do not transform sections of the fibered manifold Y into sections of Y ; in
particular, such variations do not transform solutions of the Euler-Lagrange equations
into solutions. Second, according to Theorem 6, infinitesimal symmetries do not include
all generators of invariant transformations of the Euler-Lagrange form. The third reason
consists in impossibility to generalize the definition of an infinitesimal symmetry to r-
th order Lagrange structures, because for lagrangians of order r ≥ 3 we do not have a
global analogue of the Poincaré-Cartan form. For these reasons, we prefer, in the theory
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of local variational principles presented below, the concept of a generator of invariant
transformations of the Euler-Lagrange form.

Remark 2. It is not known whether there exists a generalization of the fundamental
Lepage form Φλ to higher order Lagrange structures.

4. Local variational principles

4.1. Local variational principles

Let ε ∈ Ωsn+1,Y Y be a locally variational form (ε is supposed to be defined globally).
According to Section 2.8, the fibered manifold Y can be covered by open sets Vι, ι ∈ I,
such that to every ι, there exists a lagrangian λι over Vι for the form ε|Vι ; over the
intersections Vι ∩ Vκ, the lagrangians λι and λκ differ by a trivial lagrangian. In general,
a globally defined lagrangian for ε need not exist.

In our definition of a local variational principle, we rephrase these properties of locally
variational forms in terms of the Lepage forms. We say that a family {(Vι, ρι)}ι∈I , in
which {Vι}ι∈I is an open covering of Y and for every ι ∈ I, ρι ∈ ΩsnVι is a Lepage form,
is said to be a local variational principle, if for every ι, κ ∈ I,

p1dρι = p1dρκ

over Vι∩Vκ. The integer s is called the order of the local variational principle {(Vι, ρι)}ι∈I .
Suppose that we have a local variational principle {(Vι, ρι)}ι∈I of order s. For every

ι ∈ I, we denote

Eι = p1dρι.

Eι is the Euler-Lagrange form of the associated lagrangian λι = hρι, defined over Vι.
Since by definition, Eι = Eκ for all ι, κ ∈ I, setting

E = Eι

over Vι, we obtain a global differential form E on Js+1Y . This form is called the Euler-
Lagrange form, associated with the local variational principle {(Vι, ρι)}ι∈I . Obviously, the
Euler-Lagrange form is dynamical, locally variational form; it is not necessarily (globally)
variational.

A local variational principle in another geometric context (i.e., on manifolds with-
out fibration) was formulated by Dedecker [5]. Our definition is close to the Dedecker’s
approach.

Two local variational principles {(Vι, ρι)}ι∈I , {(V
′

κ, ρ
′

κ)}κ∈K are equivalent, if the as-
sociated Euler-Lagrange forms E, E ′ coincide, i.e., E = E′.

Theorem 7. A family {(Vι, ρι)}ι∈I , in which {Vι}ι∈I is an open covering of Y and
for every ι ∈ I, ρι ∈ ΩsnVι is a Lepage form, is a local variational principle if and
only if to every ι, κ ∈ I, there exists a form ηικ ∈ Ωrn−1(Vι ∩ Vκ) and a contact form
χικ ∈ Ωrn(Vι ∩ Vκ) such that over Vι ∩ Vκ,

(19) ρι − ρκ = dηικ + χικ.

Proof. If ρι − ρκ = dηικ + χικ, for some ηικ and χικ, then d(ρι − ρκ) = dχικ.
This means that the class of χικ is a contact Lepage form. Since p1dχικ depends on the
corresponding lagrangian only, that is, on hχικ (see Section 2.3), and this lagrangian is
zero, we have p1dχικ = 0. Consequently, p1dρι = p1dρκ. Conversely, if p1dρι = p1dρκ,
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then the Euler-Lagrange form Eh(ρι−ρκ) vanishes. This means that the lagrangian h(ρι−
ρκ) is trivial, which implies (19).

4.2. First variation formula, extremals

A basic tool for an analysis of extremals and invariant transformations of a variational
functional is the first variation formula. We now give a formulation of the first variation
formula for local variational principles.

Let {(Vι, ρι)}ι∈I be a local variational principle of order s. Fix an index ι ∈ I, and
choose a piece Ω ⊂ π(Vι). Then we have the variational functional

ΓΩ,Vι(π) 3 γ −→ ρι,Ω(γ) =

∫

Ω

Jsγ∗ρι ∈ R.

For any π-projectable vector field ξ on Y , we have the first variation formula

∂Jsξρι = iJsξdρι + diJsξρι.

This formula can easily be written by means of the associated lagrangian λι = hρι. Since
∂Js+1ξhρι = h∂Jsξρι = hiJsξdρι + hdiJsξρι, we have

∂Js+1ξhρι = hiJs+1ξp1dρι + hdiJsξρι = hiJs+1ξE + hdiJsξρι,

and
∂Js+1ξλι = hiJs+1ξE + hdiJsξρι,

where E is the Euler-Lagrange form of {(Vι, ρι)}ι∈I . This is another formulation of the
first variation formula for the local variational principle {(Vι, ρι)}ι∈I .

We have the following simple observation.

Theorem 8. Let {(Vι, ρι)}ι∈I be a local variational principle of order s. Let γ be a
section of Y . The following conditions are equivalent:

(a) For every ι ∈ I, γι = γ|π(Vι) is an extremal of the variational functional ρι,Ω.
(b) For every π-projectable vector field ξ, γ satisfies

Js+1γ∗iJs+1ξE = 0.

A section γ, satisfying any of these two equivalent conditions, is called an extremal of
the local variational principle {(Vι, ρι)}ι∈I .

4.3. Invariant transformations

It is straightforward to extend the theory of invariant transformations as introduced
in Section 2.9, to local variational principles. The concept of a lagrangian in this case
is defined only locally, but we still have the notions of invariance of the Euler-Lagrange
form.

Suppose that we have a local variational principle {(Vι, ρι)}ι∈I of order s, and denote
by E its Euler-Lagrange form. Let α : W −→ Y be an automorphism of Y . We say that
α is an invariant transformation of E, if

Js+1α∗E = E.

A π-projectable vector field ξ on Y is said to be the generator of invariant transformations
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of E, if

∂Js+1ξE = 0.

The following is straightforward.

Theorem 9. Let {(Vι, ρι)}ι∈I be a local variational principle, and let ξ be a π-
projectable vector field. Let E be the Euler-Lagrange form of {(Vι, ρι)}ι∈I . The following
conditions are equivalent:

(a) ξ is a generator of invariant transformations of E.
(b) There exists a family {ηι}ι∈I of (n − 1)-forms ηι ∈ Ωsn−1Vι such that for every

ι ∈ I,

(20) hiJs+1ξE + hd(iJsξρι − ηι) = 0.

Proof. Let ξ be a generator of invariant transformations of E, let ι ∈ I. Over Vι,
E = Eλι , where λι = hρι, and ∂Js+1ξE = E∂

Js+1ξ
λι = 0, hence by Theorem 3, ∂Js+1ξλι =

hdηι for some (n− 1)-form ηι over Vι. Then

∂Js+1ξλι = hiJs+1ξE + hdiJsξρι = hdηι,

proving (20).

Consider the Euler-Lagrange form E of the local variational principle {(Vι, ρι)}ι∈I ,
and a vector field ξ on Y . Let (V, ψ), ψ = (xi, yσ), be a fibered chart on Y such that
V ⊂ Vι. Suppose that over V

hρι = Lιω0,

and

ξ = ξk0
∂

∂xk
+ ξσ

∂

∂yσ
.

Then over V,

E = Eσ(Lι)ω
σ ∧ ω0,

where

Eσ(Lι) =
r
∑

k=0

(−1)kdi1di2 . . . dik
∂Lι

∂yσi1i2...ik
,

and

(21) hiJs+1ξE = Eσ(Lι)(ξ
σ − yσk ξ

k
0 )ω0.

Formula (21) shows that the Euler-Lagrange equations for extremals are, over V ,

(22) Eσ(Lι) = 0.

Thus, if ξ generates invariant transformations of E, we have a conservation law

(23) d(iJsξρι − ηι) = 0

(along any extremal). The arising equations (23) should be considered together with
equations (22).

The set of generators of invariant transformations of the Euler-Lagrange form is a Lie
algebra. Indeed, if two π-projectable fields ξ and ζ, satisfy

∂JsξE = 0, ∂JsζE = 0,
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then since Js[ξ, ζ] = [Jsξ, Jsζ], we have

∂Js[ξ,ζ]E = ∂Jsξ∂JsζE − ∂Jsζ∂JsξE = 0.
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[14] Krbek, M., Musilová, J., “Representation of the variational sequence by differential

forms”, Rep. Math. Phys. 51, 251-258 (2003).
[15] Krupka, D., “A geometric theory of ordinary first order variational problems in fibered

manifolds, I. Critical sections,” J. Math. Anal. Appl. 49, 180-206 (1975), “II. Invariance”
J. Math. Anal. Appl. 49, 469-476 (1975).

[16] Krupka, D., “A map associated to Lepagean forms of the calculus of variations in fibered
manifolds”, Czechoslovak Math. J. 27, 114-118 (1977).

[17] Krupka, D., “Lepagean forms in higher order variational theory”, in: Modern Devel-
opements in Analytical Mechanics, Proc. IUTAM-ISIMM Sympos., Turin, June 1982,
Academy of Sciences of Turin, 197-238 (1983).

[18] Krupka, D., “On the local structure of the Euler-Lagrange mapping of the calculus of
variations”, in: Proc. Conf. on Diff. Geom. Appl., Nové Město na Moravě (Czechoslo-
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